
ggvis: multidimensional scaling as a plugin in ggobi

Deborah F. Swayne and Andreas Buja

December 3, 2002

Abstract

ggvis is a plugin for ggobi, and this short manual begins to describe its use. It is a port of
xgvis, previously available as part of the xgobi software.

1 The data

First, you need some data. The ascii format supported by ggobi is not adequate for the specification
of edges, so you’ll probably use an xml file with a minimum of two datasets: a set of cases or nodes,
and a set of edges. The records in the node data must have ids:

<record id="0"> ... </record>
<record id="1"> ... </record>

The edge records use those ids to specify a source and destination:

<record source="0" destination="1"> ... </record>

No two records in the same xml file may have the same record id.
The sample data that is discussed here is part of the ggobi distribution: snetwork.xml, an

artificial social network of 140 people who are connected by 205 edges, representing some (unspec-
ified) form of social contact. Notice that there are two variables recorded for each node, and two
variables for each edge.

In a ggobi scatterplot display, use the Edges menu to display the edges, and maybe the “ar-
rowheads” which indicate edge direction.

2 Specifying the datasets

Initiate the plugin by selecting the “ggvis (MDS) ...” item on ggobi’s Tools menu. The ggvis control
panel starts with a “notebook” widget with three tabs. The first tab, “Specify datasets,” contains
two lists, one for datasets which can supply nodes and one for datasets which can supply edges. In
most cases, only one choice is possible, but more complex arrangements can occur.

The snetwork.xml data supplied with ggobi has exactly one set of nodes and one set of edges.
For this data, there are no choices to be made, and you can simply move on to run multidimensional
scaling.

With the morsecodes.xml data, there are in fact two sets of edges. The first one, “distance,”
supplies the distances to be used in determining the point positions. The second set, “edges,” is a
set of edges that can be used for display, because it emphasizes the structure of of the data.

1



3 Running MDS

This section documentation has not yet been written, but we can refer you to documentation for
the older xgvis ([?], http://www.research.att.com/areas/stat/xgobi/), which was used with xgobi,
ggobi’s predecessor.

4 Manipulations

All the standard ggobi direct manipulations are available. Plots of the graph can obviously be
linked node-wise to plots of node covariates. What might be less obvious is that they can also be
linked to plots of edge covariates, so that an edge in the graph corresponds to a node in the plot of
edge data. Nodes can be interactively brushed and “identified;” edges can be brushed – to set the
color of the line type and width. The “color schemes” tool can be used to automatically color the
nodes or the edges.

Nodes can also be moved, which can help untangle the layout a bit. Groups of nodes can be
moved together: first brush them with the same symbol and color, and then select Move brush
group in the Move points ViewMode.

4.1 Thinning the graph

Brushing can be used to thin the plot, by hiding nodes with especially high in or out degree, for
example, or nodes with large values of depth. Once those nodes are hidden, a new layout can be
produced.

5 Plot control from R

If you have launched ggobi from within R, you can use the API to drive the plot. Here are some
fragments of code in the S language that I have used.

In the first example, I have two xml files representing two related graphs, and I’m interested
in comparing them. This is part of the code used to highlight the edges the two graphs have in
common.

g1 <- ggobi("f1.xml")
setDisplayEdges.ggobi(.gobi=g1)
e1 <- getEdges.ggobi(.data=2, .gobi=g1)
g2 <- ggobi("f2.xml")
setDisplayEdges.ggobi(.gobi=g2)
e2 <- getEdges.ggobi(.data=2, .gobi=g2)
...
esame1 <- enames1 %in% enames2
edgecolors1 <- rep(1, nedges1)
edgecolors1[esame1==T] <- 6
setColors.ggobi (edgecolors1, .data=2, .gobi=g1)
...

In the second example, there is one graph, and its edge covariates are the values of a variable
recorded for each edge at ti. I use R to animate the graph, using color to encode the edge weight;

2



I first chose a sequential colorscheme. Similarly, one could use setGlyphs.ggobi() to set node type
or size. The same command sets edge type or thickness when applied to the edge data. To hide
some of the edges, use setHiddenCases.ggobi().

edges <- getData.ggobi(2)
ntimesteps <- dim(edges)[2]

for (i in 1:ntimesteps) {
tgraph (i, edges)
...
colors <- integer(dim(edges)[1])
colors[lnw>(3*mx/4)] <- 5
colors[lnw>(mx/2) & lnw<=(3*mx/4)] <- 4
colors[lnw>(mx/4) & lnw<=(mx/2)] <- 3
colors[lnw>0 & lnw<=(mx/4)] <- 2
setColors.ggobi (colors, 1:length(colors), 2)

}

In an extension of the second example, the xml file includes three datasets. The third is of
dimension ntimesteps by 2, and its single time series plot represents the sum of all measurements
for all edges at each time step. As the animation runs, we highlight the corresponding point in a
scatterplot of this time series.

tcolors <- integer(ntimesteps)
tcolors[1:length(tcolors)] <- 3
tcolors[i] <- 7
setColors.ggobi (tcolors, 1:length(tcolors), 3)

6 Related work

Another plugin, GraphLayout, offers several methods for laying out graphs. One of its methods,
called neato, produces layouts that are similar to those of ggvis.

7 Future work

A third plugin, not yet named, will allow manipulations of graphs, independent of the layout
method used.

3


