Using the R-GGobi Link

Andreas Buja
Di Cook
Deborah Swayne
Duncan Temple Lang

November 27, 2002

Abstract

In this document, we describe some of the features of the R-GGobi link. We illustrate some of the common uses
and the different functions to both query and modify the state of the GGobi. This serves as a form of a tutorial.

1 Getting Started

The first thing to do is create a ggobi instance. Each instance is associated with a particular dataset. There are two
ways to create this. One specifies the name of the file to read and the other takes a data frame or matrix in R. The first
takes a string, such as

> ggobi("../data/flea™)
The second form passes the data frame as the first argument.

> data(mtcars)
> ggobi(mtcars)

Both of these create ggobi in the same manner as the stand-alone application via the command line. One can pass a
vector of strings as arguments which are processed as command line arguments. When specifying the name of a file,
one can specify whether this is XML, ASCII or binary.

> ggobi()
> setData.ggobi(data.frame(a=rnorm(100), b=runif(100))

We can create a ggobi instance with no data and set the data in a later command.

> ggobi()
The opposite of creating a ggobi instance is closing its displays and removing it from the session. This is done via
close.ggobi . As usual, the particular instance to operate on is identified bygthtd argument and defaults to the

default instance.
I have seen this crash, but can’t yet see why.
At any point, the dataset can be augmented by adding variables.

addVariable.ggobi()

2 System Values

The representation of points or observations within a plot is controlled by its glyph. Each observation has its own
glyph setting. This controls the type and size of glyph. (In the near future, these may be indepdently settable across
sub-plots.) The possible values for the glyph type and size are fixed for a ggobi session. They can be queried via the
functionsgetGlyphTypes.ggobi andgetGlyphSizes.ggobi

> getGlyphTypes.ggobi()
+ x or fr oc fc

1 2 3 45 6 7
> getGlyphSizes.ggobi()
1] 012345678

Each ggobi instance has its own color map. The color of each observation is specified as a row index into this
colormap. Each row of this map or table is an RGB color value.

> getColorMap.ggobi()
Red Green Blue

1 1.0000000 0.0008697642 0.0000000
2 1.0000000 0.2699931334 0.0000000
3 1.0000000 0.5499961852 0.0000000
4 1.0000000 0.8399938964 0.0000000
5 1.0000000 1.0000000000 0.0000000
6 0.0000000 0.7499961852 1.0000000
7 0.5099870 0.4399938964 1.0000000
8 0.6000000 0.8000000000 0.2000000
9 0.0000000 0.9799954223 0.6000000
10 0.7299916 0.3299916075 0.8299992

One can set the color map with the functeetColorMap.ggobi . To change, for example, the second row to
the valuess, .2.3, we can use the following steps

mp <- getColorMap.ggobi()
mp[2,] <- ¢(.8,.2,.3)
setColorMap.ggobi(mp)

3 Brushing

One can determine which observations are contained within the current brushing region with the fygt&&ectedindices.ggob
This returns a vector containing the (unordered) indices of the observations in the dataset that have been selected, to-
gether with their labels.

The functionisObservationSelected.ggobi returns a logical vector with as many elements as there are
observations in the dataset. Each element indicates whether the observation is within the current brushing region.

4 Programmatically Configuring a View

One can (will be able to) set the brush location and size directly via a function call. Additionally, one can control the
glyph type, size and color for the points under the brush.

One can use the programmatic interface to capture views and replay them. For example, we might want to display
the effect of identifying different groups of observations.

views <- list(c(20,20, 100,100), c¢(400,300), c(300,150,40,40))
setMode.ggobi("Brush")
for(i in views) {

setBrushLocation.ggobif(i)
print(getSelectedindices.ggobi())

prompt()

5 Creating New Windows and Plots

SeeRSCreatePlot.c for some details.

The graphical user interface for GGobi allows one to create new windows and groups or collections of plots. These
collections are defined by the menu or button that is used to generate them and offers little in the way of allowing the
user to specify what the type or content of the individual elements of the collection are. In R, we have a programming
language and so we can use it to allow the user create these groups of plots and to add them to a particular window.

The current mechanism for creating plots from R is a two step process.

1. one creates descriptions of the individual plots that one wants to create. These are very simple, involving just
the type of plot and identifiers for the variables it is to contain.

2. pass these plots to the functiptotLayout to create the plots and lay them out within a new (or existing)
window.

5.1 Plot Descriptions

There are 5 types of plot descriptions that one can create. The first 4 are the basic plots offered by GGobi. These are
e parallel coordinate plots;
e 1D ASH plot;
e scatterplot; and
e scatter plot matrix.

Thest type is a general container that is used to house any number of these basic types
To create a description of a plot, one decides the desired plot type and calls the corresponding function Each of

parallel coordinate plots parallelCoordDescription

1D ASH plot ashDescription
scatterplot scatterplotDescription
scatter plot matrix scatmatrixDescription

Table 1: Plot Description Functions

these takes the variables involved in the plot as their first arguments (or argument for the ASH plot). These can be
specified either as the names or indices (starting from 1) of the variables within a dataset managed by a ggobi instance.
All of the description functions allow one to associate a particular ggobi instance and dataset with the description.
These default to being unspecified and can be provided when the plot is being created. By specifying these, one
indicates that the description is to be used with a particular ggobi and/or dataset.

We recommend that people use names to identify variables and also datasets.

plot4 <- scatterplotDescription(“tarsl"”, "tars2")
plot5 <- scatmatrixDescription("tars1", "tars2", "head")

1At present, we don not allow containers within containers.

5.2 From Descriptions to Plots

To instantiate the descriptions into visible plots, one useptbéayout . By default, this creates a new ggobi
display - a separate window - associated with a given variable selection panel. Into this, it is adds each of the plots
created by converting the corresponding description into an actual plot. By default, the plots are added vertically to
form ak x 1 table or grid, wheré is the number of plot descriptions passed to the function.

As noted in the previous paragraphs, the plots do not have to be homogeneous and can even be plots within plots
(i.e. the container of plots).

The layout of the plots can be controlled in two ways. Firstly, we can specify a different arrangment for the grid
into which the plots are added. Rather than accepting the défaultlayout, one can specify the number of rows and
columns in that same way that one partitionsRagraphics device usingnfrow. This is an integer vector containing
two elements: the number of rows and the number of columns of the grid, in that order.

plotLayout(plot4, plot5)
plotLayout(plot4, plot5, mfrow=c(1,2))

More fine grained control over the positioning of the individual plots can be obtained usinglthargument.
One can specify the left, right, top and bottom cells that are to border a particular plot. For example, suppose we have
a2 x 2 screen and we want to display 3 plots within it. The first two plots are to occupy the first row and the final
plot is to span both columns of the second row. To do this, we specify the three plot descriptions and ptovitle a
matrix containing the boundaries of each plot asabkésargument. Each column in this matrix contains the index of
the bordering cells in the grid layout. The first plot therefore is givehfas the column on the lef} for the column
on the right and and2 as the top and bottom rows. Similarly, the second plot which is to appear in the top-right cell
is given aq(1, 2, 1, 2), differeing only in the column column cells.

The final plot occupies the second row and so has top and bottom rovamd 3 respectively. The column
specifications arél, 3) indicating that first column is on the left and the right side of the plot borders the third column
of the2 x 2 grid.

The result is something like

The functiongtkCells is a simple way to create the cell-border specification for a regularly spagedgrid.
One can the subset the resulting matrix and insert other specifications to create the appropriate specification for a
particular cell layout for a collection of plots.

As an example, suppose we havé:a 2 grid and we want to placgplots in the following positions{1, 1), (2, 2)
and(3, 1) where each pair gives the row and column indeces.

plotLayout(plota, plotb, plotc, mfrow=c(3,2),
cells = t(gtkCells(3,2)[c(1,4,5),]))

Note that the result oftkCells is (currently) a matrix(r * ¢) x 4 matrix and must be transposed to be used in
plotLayout . Also, the elements are organized row-wise, i.e. the fiedements correspond to the cells in the first
row of the grid, the secondelements to the next row, etc.

Rather than creating a new display for the collection of plot descriptions being instantiated, one can add them to an
existing ggobi display window. This is usually done when it is more convenient to create an empty display and add plot
descriptions as they are available. To add a plot to an existing display, merely provide the index of the display within
the specified ggobi instance as the argunasylay. This is the value returned from an earlier calptotLayout

dpy <- plotLayout(mfrow=c(3,2))
plotLayout(plotl, plotb, plotc, cells= t(gtkCells(3,2)[c(1,4,5),]),
display = dpy)

One thing to note about creating an empty display is that it will become the active display and all variables in the
control panel will become unselected.

5.3 Nested/Container Plots

The scatterplot matrix and parallel coordinate plots can contain more than one sub-plot. However, they can be treated
as a single cell of the grid/table layout. The entire plottbedded displaeceives the space allocated the particular

cell (as specified by theellsargument.) Each sub-plot is then given the appropriate amount of that space. In a parallel
coordinates plot, the sub-plots are arrangetl ink table (i.e. one row anél columns, one per variable). In a scatter
plot matrix, the sub-plots are arranged in a regular grid of dimengiong, all having the same dimensions.

In the next version of this code (when it is tidied up and consolidated), we will use the gér@valPlotList
function that acts as a nested description of plots along with their layouts. In this way, one can provide recursively
defined nested plots that are self-describing.

6 Managing Windows

Because one can easily create multiple ggobi instances and many displays within each instance, managing the display
windows can be difficult. Accordingly, we provide some facilities for programmatically controlling them. The first set
work on the displays. The functiomgtActivePlot.ggobi andsetActivePlot.ggobi operate on either a

display or a display and sub-plot object.

Firstly, one can move one or all of the windows within a ggobi instance to the background or foreground. This
uses the functionaisePlot.ggobi and the argumemtise indicates whether the windows should be lowered or
raised. The former pushes them below all the other windows on the desktop. The latter raises them above the other
windows. The location of each window remains unaltered, and merely its “depth” or stacking order is changed.

Similarly, one can iconify and de-iconify one or more windows. The funcibomify.ggobi provides this
functionality via theicon argument.

7 Callbacks

Associating R function calls with events in GGobi is a valuable way to allow customization of the existing interactivity
provided by GGobi. Consider an example where we have a scatterplot of two variables X and Y. As we identify
individual points in the scatterplot, we might want to examine the result of fitting the regression of Y on X with that
point omitted. GGobi does not currently provide such a facility. However, it is trivial in R. By allowing one to register
an R function to be called when a particular event (the identification) occurs, we can easily arrange to update other
plots. Given the available primitives with which we can control ggobi or other graphics devices, we can

Clustering or model selection might serve as other examples. The basic idea is that we would have some data that
represents the fits for different models. The data frame is made up of, say, 2 columns - Model identifier (an integer)
and the fit statistic (e.g. Cp, etc.). As we identify or brush over one or more points, we want to link with a plot in
another ggobi using the indeces of the other model. For example, we might want to show the residuals resulting from
that fit. This is non-trivial in GGobi since the data does not correspond to the model it employs which is a rectangular
array of data. (Again, an object oriented approach would be convenient, but still difficult.) Thus, we need two ggobi
instances, with different but related data. Additionally, we need a mechanism to specify linking between plots and
displays within and between ggobi instances.

Covering all such cases is not feasible in GGobi both from a programming perspective and additionally as an
issue of complexity in the user interface. Instead, a programmatic mechanism for “linking” or associating/connecting
displays and or plots within displays both between and within ggobi instances is necessary. Furthermore, while many
of the common linking actions can be performed efficiently in GGobi itself, allowing arbitrary R functions to be
invoked for these connection events is important to allow new styles of linking to be explored and implemented easily.

The basic functions for performing these types of actiorsettdentifyHandler.ggobi

setldentifyHandler.ggobi(function(i) {print(i)})

More arguments should be supplied to this function.

We may also want to make this plot specific, thus allowing the data to be stored in the function rather than having
to be determined at evaluation time. For example, suppose we want to know what variables are being identified and in
what ggobi. We can create a closure with that information in the environment.

handlerTemplate <- function(x,y, ggobi) {
handler <- function(which) {
cat("Observation", which,

in", ggobi,"\n")

}

return(handler);

}

Of course, we can do this for the ggobi instance as it stands now.
To remove the handler

setldentifyHandler.ggobi(NULL)

SeeldentifyProc() in ggobi.h and add the appropriate set and get for the ggobid specific instance. Already
arrange to do callback.
We can make this slightly more flexible and efficient. BwetldentifyHandler.ggobi can specify how

many arguments the function wants to receive. This can be stored with the function reference in the user data field of
the ggobi handler structure. Then, when we go to invoke the function, we can determine how many arguments to pass.
This allows some functions to avoid the overhead of creating unecessary arguments that will never be used. It would
be ideal if there was an easy way for the R function to access the “environment” of the C-level calling routine (as is
possible in Omegahat due to the seamless access between the interpreted and native language).

Bad things happen when we get an error in the R functions. We must handle this with a better jumping mechanism.

8 API Routines

In this section we describe the different R/S functions that one can invoke to query and modify the state of the GGobi
session. There are some common concepts shared between most of these functions.

Firstly, there are some global variables that are properties of the entire ggobi system. These are things such as the
color table, the glyph types and sizes. These can be considered fixed, but queryable.

Within a ggobi session, one can view different datasets simultaneously. Each dataset corresponds to its own ggobi
data instance within the single session. (Note that this is different from xgobi in which only one dataset could be
introduced into the a process.)

Within each ggobi instance, one can have multiple windows, also known as displays. Each display has one or more
plots within it. The plots can be a

e 1 variable plot such as ASH plots,

e scatterplot of two variables

e scatter matrix of 2 or more variables
¢ parallel coordinates plot df variables.

This hierarchical setup is displayed in the following figure.

Session

dataset e dataset

display display

plot : plot plot : plot

When operating with multiple datasets in the ggobi session at any one time, it is important to identify to which
instance a command should be directed. For example, if we wish to get information on the variables within a particular
instance of a ggobi instance, we can ggditVariableNames.ggobi . However, we must specify the ggobi
instance in question. All the functions that operate on a ggobi instance have an optional argygoeéntyhich is an
integer. If omitted, this defaults to the currently active ggobi instance.

This allows us to send repeated commands easily to a ggobi instance.

> ggobi(args="../data/tes")

> ggobi(args="../data/flea") #

> getVariableNames.ggobi()

[1] "tarsl" "tars2" "head" "aedel" "aede2" "aede3"
> setDefaultGGobi(1)

> getVariableNames.ggobi(.gobi=2)

Additionally, commands intended for another can be directed without setting that instance to the default.
[What is intended here?]
By default, this is This identifies
have multiple ggobi instances in existence at any one time. Each ggobi has its own

8.1 getData.ggobi

Since the user can load data in a hon-programmatic way, there is an opportunity for XGobi to have data that has not
been introduced to the R/S session. As a result, we need a mechanism to retrieve the current values of the active data
set. This is especially important if we allow the data to be edited in any way.

To get the R data values from a GGobi dataset, one can use the fugetidata.ggobi . This takes the dataset
identifier (either a reference, index or name) and the GGobi instance. (By default, it fetches the first dataset in the
active GGobi.) The return value is a matrix of numeric values containing the data values. The names of the rows and
columns are the XGobi row labels and variable names respectiWelynight make this a dataframe in the future in
order to handle categorical variables.

Note that subsetting on a ggobi instance reference (basically an integer returgetDigfaultGGobi and
ggobi) works in a manner consistent with R, returning a reference to the corresponding dataset. Then one can uses
this to access some or all of the values within that dataset.

g <- ggobi(mtcars)
9[1][1:10,]

gl(1]][1:10, c("mpg","cyl")]
ol[1]][1:10, 1:2]

For large datasets and situations where one wants to extract relatively few columns, it might be more efficient
to use thegetVariable.ggobi function. This avoids copying the entire dataset into an R structure, and works
only on the specified variables. This returns a named list giving the values for the variables of interest. We do not
automatically convert this to a dataframe as the names of the records in the GGobi data need not be unique. (This
restriction for dataframes has been made optional in R recently (version 1.4.0) so we migh create a dataframe default
soon.)

In the same way that we have overloaded[theperator, we have defined methods for the functiding, ncol |,
nrow , dimnames , names which act on ggobi dataset instances.

8.2 getColors
8.3 getSelectedindices

This needs attention to access the correct variable in the xgobi structure.

8.4 getNumGGobis

Returns the number of ggobi instances within this session. Each ggobi instance has its own data set. Of course, two
instances may have the same dataset, but they are independent. We may allow them to be linked in the future. Again,
the ability to specific which displays and even plots within them inter- and intra- ggobi instance is most useful in a
programmatic interface.

8.5 getDefaultGGobi
8.6 setDefaultGGobi

Since there can be multiple ggobi instances, one must identify the instance to which instructions are directed. To
simplify this, R supports the notion of an active or default ggobi. All functions that refer to a ggobi instance use the
default ggobi if thegobiargument is not specified. This value is obtained via the fungi&BefaultGGobi

When a new ggobi instance is created (ggebi), it becomes the default ggobi. One can switch the active
instance to another using the functisetDefaultGGobi

The return value frongetDefaultGGobi is an integer which ig-based. This has clasggobi”

The value can be passed directly to the functi@dd&obiC and.GGobiCall . It is automatically decremented
by these to b@-based, corresponding to the C routines.

8.7 getRowNames.ggobi

Returns the observation labels for the specified ggobi instance.
See als@etRowNames.ggobi

8.8 getSmootherFunction.ggobi

8.9 setSmootherFunction.ggobi

GGobi provides different smoothing algorithms. However, it is impossible for it to provide all possible implementa-
tions. To allow others to provide their own, we allow an R function to be registered with the ggobi session so that
it is called when the user slides the smoothing parameter backward and forward. This, of course, is not as fast as
implementations in C code. But it is useful to allow one to experiment and get an impression of the results. The R
function is called with three arguments: the x and y data values and the bandwith of the smoother, taken from the
slider. The first two are numeric vectors of lengttand the bandwidth is a scalar. One can register a function that
performs the smoothing and returns the predicted value something like:

library(modreg)
function(x, vy, w) {

predict(loess(y ~ x, data.frame(x=x, y = y), span = w))
}

8.10 ggobi

This is the function that creates a ggobi instance. One specifies the name of a file or a data frame (or matrix). The
newly created ggobi instance becomes the default
SeesetDefaultGGobi

8.11 getActivePlot.ggobi
8.12 setActivePlot.ggobi

Each ggobi instance has one display that is considered active and within that display, a sub-plot on which brush and
identify operations will take effect. This is the active plot. These two functions maniuplate the currently active plot.
The first returns an integer vector identifying the display and within-display plot that is considered active. The second
sets the active plot to the one identified by the integer pair. In this case, the second element can be omitted or NA.

8.13 getCurrentDisplayType.ggobi

Each ggobi has a concept of an active window or display. Within each of these displays, there is one or more sub-plots.
This function returns the name of this active plot. §et/iewTypes.ggobi . Also, seayetActivePlot.ggobi

At present, the sub-plots in a display are all of the same type. As a result, the plot type is taken from the display.
When and if we allow non-homegeneous plot types within a display, we will have to modify how this routine is
implemented.

8.14 getDescription.ggobi

This gives a brief description of the specified ggobi instance. This gives the name of the file from which the data was
read, the type of file format (e.g. xml, ascii, binary) and the dimensions of the data.
See alsg@etNumGGobis .

8.15 getDisplayOptions.ggobi

This returns the current settings of the values that control how new plots are displayed. Each ggobi instance has a set
of options which are used to create new plots. These are logical values that govern the appearance of these plots. This
function returns a named vector of those values currently in existence.

8.16 getDisplays.ggobi

Returns a list describing each display (or window) of plots within the specified ggobi instance. Each element in the
list identifies a display and gives the title of the window, the type of the plot(s) contained in the display (since they
are currently homogeneous) and a list describing each of the plots. The plot description depends on the type of plot.
Generally it contains a list of the variables within that plot. This is an integer vector giving the indeces of the variables.
The names of the elements in this vector are the names of the variables.

What about subsets in effect when the display was created, etc. This doesn'’t really apply as the plots are updated
when the set of hidden observations is modified. If one wanted to display different views of the same data with a
different collection of hidden variables, one could open multiple ggobi instances.

Some of this might change when we experiment with moving these types of attributes (color, hidden, etc.) to
sub-plot instances rather than having them globally in the ggobi instance.

8.17 getFileNames.ggobi

Returns the names of the data source (e.g. file, URL, database) from which the datasets in GGobi were read. If
the data was explicitly set from an R object, this returns a description supplied to the ggobi instance. The mode
getDescription.ggobi()[['Data mode"]] of the data can be used to determine the format or source of
the data

One can get slightly different information describing the data in a GGobi instancegetingscription.ggobi
Alternatively, one can first obtain a reference to a particular dataset within the GGobi instance and then ask get the
name of the file by looking at the data element in that object. For example,

g <- ggobi(system.file("data”, "flea", package="ggobhi"))
g[1]$data

The subsetting og() is short-hand for

getDatasetReference.ggobi(1, .gobi=g)

8.18 getGlyphs.ggobi

Return a description of the glyph being used for each of the observations.

8.19 getEdges.ggobi
8.20 setEdges.ggobi

The first of these obtains anx 2 matrix wherer is the number of edges in the given dataset. Each element contains

the indices of the observations which are connected. The second function sets the connected observations. The
format is similar to the return value getEdges.ggobi . A matrix with 2 columns can be supplied to identify the
observations to be connected by each line segment. Alternatively, two integer vectors can be supplied. The user has
the option to add the specified segments to the existing ones or replace the latter with the specified connections.

8.21 getVariableindex.ggobi

This is used to map one or more names into the corresponding variable indices used by the ggobi instance. It uses
getVariableNames.ggobi and matches each of the elements passed to it. The resulting values are based on a
1-based counting scheme and must be decrementeddryuse in aCall

8.22 (getVariableNames.ggobi

Returns a character vector containing the names of the variables in the specified ggobi.

8.23 getViewTypes.ggobi

The Ggobi system supports several different plot types. This function returns a named integer vector. The names
are descriptions of the types of plots. The values in the vector are the symbolic constants used within the C code to
identify the plot type. These values are rarely used since functions to create instances of the different plot types are
available. Sescatmat.ggobi , scatterplot.ggobi , parcoords.ggobi

8.24 parcoords.ggobi

8.25 scatmat.ggobi

8.26 scatterplot.ggobi

Each of these functions creates a new display/window and adds it to the specified ggobi instance. Each provides a
mechanism for specifying what variables should be contained in the plot and this provides greater specifiability than
with the graphical interface. The specification of the variables can be done either by name or by index. If using names,
these should match

e parcoords This creates a Parallel Coordinates plot. The variable

8.27 setData.ggobi

Specify a data frame or the name of a file

8.28 setDataFile.ggobi
8.29 setDataFrame.ggobi

This sets the dataset for the particular ggobi instance to the contents of the dataframe. Each column in the data frame
corresponds to an observations. The row names of the data frame are used as the observation labels in the ggobi
displays.

10

8.30 setDisplayOptions.ggobi

This controls the characteristics of plots that are subsequently created within the specified ggobi instance. These
control issues such as

e whether lines are drawn,
e lines are directed or undirected
e missing values are displayed (not implemented)

e axes are shown.

8.31 setRowNames.ggobi

This sets the observation identifiers for the specified rows in the ggobi instance dataset. These are used in identifying
points within plots.
The return value is a vector of the previous labels for the specified rows/observations.

8.32 getBrushSize.ggobi , setBrushSize.ggobi , getBrushLocation.ggobi &
setBrushLocation.ggobi

8.33 close.ggobi

This destroys the specified ggobi instance, closing all its windows/displays and the main control-panel window.

9 Developer Functions

9.1 .ggobi.symbol

This is of little or no interest to the regular user. It is merely a function that takes the name of a C routine and maps it to
the name of a routine in the GGobi chapter. It does so by prefixing the name with the “unique” identifier RS’ GGOBI
in an effort to avoid symbol conflicts with other libraries.

9.2 .GGobiCall & .GGobiC

There is an interesting “bug” in th€ and.Call functions. If one creates a wrapper as wiBGobiCall and
.GGobhiC and pass a named argument, the gets symbol name of the routine being invoke becomes corrupted.

11

